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Abstract

This paper takes a number theory view on an optional homework problem [2] given by Professor Ellenberg.

The probelm is for which positive integers k is 1
2k

contained in the Cantor set. In the original problem, we

showed that 1
2 and 1

8 are not in the Cantor set, while 1
4 is in the Cantor set. This paper will show that in

the general case for 1
2k

, only 1
4 is in the Cantor set.
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1 Introduction

1.1 Cantor Set

The Cantor set [1] is C is created by iteratively deleting the open middle third from a set of line segments,

starting from the interval [0,1]. The Cantor set contains all points in the interval [0, 1] that are not deleted

at any step in this infinite process. This process can be described recursively by setting

C0 := [0, 1]

and

Cn =
1

3
(Cn−1 ∪ (2 + Cn−1))

C = lim
n→∞

Cn =

∞⋂
n=0

Cn

The explicit closed formulas for the Cantor set are

C = [0, 1] \
∞⋃
n=0

3n−1⋃
a=0

(
3a+ 1

3n+1
,
3a+ 2

3n+1
) (1)
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1.2 1
4

is in the Cantor set

This section will show that 1
4 is in the Cantor set with basic number theory knowledge. Suppose it is

not in the Cantor set towards a contradiction. Then by (1), exist a and n such that
3a+ 1

3n+1
<

1

4
<

3a+ 2

3n+1

12a+ 4 < 3n+1 < 12a+ 8

The only possible value for 3n+1 to take are 12a + 5, 12a + 6, 12a + 7. Among them 12a + 6 is the only

term that is divisible by 3. As a result, if such a, n exist then 3n+1 = 12a + 6. However, 3n+1 is odd and

12a+ 6 is even, which is a contradiction. This showed that 1
4 has to be in the Cantor Set.

2 Preliminiary

This section present several lemma that is needed for the later proof.

Lemma 2.1. The smallest positive integer p such that 3p ≡ 1 (mod 2k) is 2k−2 for k > 2. The multiplicative

order of 3 modulo 2k is 2k−2 for k > 2.

Proof. From Euler’s Theorem, since 3 and 2k are coprime, 3φ(2k) ≡ 1 (mod 2k). φ(2k) = 2k−1, so we

have 32
k−1 ≡ 1 (mod 2k). However, 2k−1 is not the smallest positive integer p such that 3p ≡ 1 (mod 2k).

In fact, 2k−2 is the order of 3 modulo 2k. In order to prove this, it suffices to show that 32k−2 ≡ 1 (mod 2k)

and 32
k−3 ̸≡ 1 (mod 2k). Use induction to show 32

k−2 ≡ 1 (mod 2k) for k > 2, base case 32 ≡ 1 (mod 23).

Induction step: suppose 32k−2 ≡ 1 (mod 2k). Since 32(k+1)−2−1 = (32
k−2

)2−1 = (32
k−2

+1)×(32
k−2−1).

Because 2k | 32k−2 − 1 and 2 | 32k−2
+ 1 ⇒ 2k+1 | 32(k+1)−2 − 1. As a result, the induction hypothesis

holds. Therefore we have

32
k−2 ≡ 1 (mod 2k) k > 2 (2)

Similarly, we can use induction to prove 32k−3 ̸≡ 1 (mod 2k). Base case: 31 ̸≡ 1 (mod 23). Induction step:

32
(k+1)−3−1 = (32

k−3
+1)×(32

k−3−1). From (2) we know that 32k−3
= 2k−1a+1, for some positive integer

a. Therefore 32k−3
+1 = 2k−1a+2, which is divisible be 2 but not 4. 2k ∤ 32k−3 − 1 ⇒ 2k+1 ∤ 32k+1−3 − 1.

As a result, the induction hypothesis holds. Therefore we have

32
k−3 ̸≡ 1 (mod 2k) k > 2 (3)

(2) and (3) force the multiplicative order of 3 modulo 2k is 2k−2 for k > 2.

Corollary 2.2. The above lemma implies that 3n has 2k−2 distinct remainders modulo 2k for k > 2.

Lemma 2.3. (2k − 1)3n has 2k−2 distinct remainders and none of them is the same with the remainders of

3n for k > 2.
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Proof. (2k − 1)3n has 2k−2 distinct remainders is because (2k − 1) is provides an injective mapping from

the remainders of 3n to remainders of (2k − 1)3n and 2.2. Suppose ∃n such that (2k − 1)3n has the same

remainders with 3n towards a contradiction. Then 2k | 3n − (2k − 1)3n, but 3n − (2k − 1)3n ≡ 2 · 3n ̸≡
0 (mod 2k) for k >2, which gives a contradiction. As a result the lemma holds.

Corollary 2.4. 3n and (2k − 1)3n together has 2k−1 distinct remainders modulo 2k for k > 2.

3 Kyle Conjecture

Theorem 3.1. None of the powers of 2 for n < −2, are in the Cantor set. [3]

This conjecture is provided by Kyle Horton on Piazza, classmates from Math521. Here is a Python

program that I wrote to help find which interval in the complement of Cantor set does 1
2k

belongs to, which

further supports this conjecture.

for p in range (1 ,16):

for k in range (100000) :

found = False

a = math.pow (2,p)*3*k+math.pow (2,p)

b = math.pow (2,p)*3*k+math.pow (2,p+1)

for j in range (int(a+1) ,int(b)):

if math.log 10(j)/ math.log 10(3)%1 == 0:

print(f’For 1/2^{p}: {3*k +1}/3^{ int(math.log 10(j)/ math.log 10(3)

)} < 1/{ int(math.pow (2,p))} < {3*k +2}/3^{ int(math.log 10(j)/

math.log 10(3))}’)

found = True

break

if found:

break

For 1/2^1: 1/3^1 < 1/2 < 2/3^1

For 1/2^3: 1/3^2 < 1/8 < 2/3^2

For 1/2^4: 1/3^3 < 1/16 < 2/3^3

For 1/2^5: 7/3^5 < 1/32 < 8/3^5

For 1/2^6: 1/3^4 < 1/64 < 2/3^4

For 1/2^7: 1/3^5 < 1/128 < 2/3^5

For 1/2^8: 25/3^8 < 1/256 < 26/3^8

For 1/2^9: 1/3^6 < 1/512 < 2/3^6

For 1/2^10: 19/3^9 < 1/1024 < 20/3^9

For 1/2^11: 1/3^7 < 1/2048 < 2/3^7

For 1/2^12: 1/3^8 < 1/4096 < 2/3^8

For 1/2^13: 7/3^10 < 1/8192 < 8/3^10

For 1/2^14: 1/3^9 < 1/16384 < 2/3^9

For 1/2^15: 1/3^10 < 1/32768 < 2/3^10
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4 Proof for Kyle Conjecture

Proof. From (1), we know that suppose 1
2k

is not in the Cantor set. Then exist n and a such that
3a+ 1

3n+1
<

1

2k
<

3a+ 2

3n+1

2ka+
2k

3
< 3n < 2ka+

2k+1

3
(4)

Let r1 be the remainder of 3n divided by 2k, we take the remainder of (4) divided by 2k and get:
2k

3
< r1 <

2k+1

3
(5)

Cantor set is symmetric about 1
2 , so if 1

2k
is not in the Cantor set, then 2k−1

2k
is also not in the Cantor

set. As a result, let r2 be the remainder of (2k − 1)3n divided by 2k we get:
2k

3
< r2 <

2k+1

3
(6)

Let’s draw the remainder when divided by 2k in the following picture.

2k

3

2k+1

3

Suppose the number of integers in the red region that r1 and r2 can take is less than the possible

remainders r1 and r2 can take. Then that means, there has to be remainders of r1 and r2 falling in to the

green region, which implies that exist n such that the remainder of 3n or (2k − 1)3n is between 2k

3 and 2k+1

3 .

In addition, since a can take value up to 3n − 1, there has to be a such that (4) holds.

From corollary 2.4 that is derived from lemma 2.1 and lemma 2.3, we know that r1 and r2 can take 2k−1

distinct integer value. There are ⌈2k3 ⌉ integer in the first red region including 0, ⌊2k3 ⌋ integer in the second

red region not including 2k. Together this gives 2 · ⌊2k3 ⌋+ 1 integers. However since r1 and r2 can only be

odd. Due to the fact that both 3n and (2k − 1)3n are odd, the number of possible value in the red region

that r1 and r2 can take are 2·⌊ 2k

3
⌋+1+(−1)k

2 numbers, which is smaller than 2k

3 + 1. Since 2k−1 > 2k

3 + 1

for all k > 2. There exists n, such that r1 or r2 are forced to be in the green region, and from the above

explaination, this showed that exist n and a such that:
3a+ 1

3n+1
<

1

2k
<

3a+ 2

3n+1
(7)

This showed that 1
2k

are not in the Cantor set for k > 2, together with 1.2 we showed that the only power

of 2 in the Cantor set is 1
4 .
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5 Discussion

Theorem 3.1 showed that 1
2q+1 are always not in the Cantor set for q > 1 suggests that there always exist

c and p such that :

(3c+ 1)2q+1 < 3p+1 < (3c+ 2)2q+1 (8)

Which is equivalent to;

|3p − (2c+ 1)2q| < 2q (9)

This somehow suggests the powers of 3 and the powers of 2 should not be too separated. This remind me of

the separation between powers of 2 and powers of 3 which is the following.

Proposition 5.1. Separation between powers of 2 and powers of 3

For any postive integers p, q one has

|3p − 2q| ≥ c

qC
3p

[4]

(9) and Proposition 5.1 is sort of opposite of each other, and they together force the powers of 3 and the

powers of 2 to be in a intertwined relation with each other.
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